Recommended Cutting Conditions

Cutting Speed

| Work Material | No. | Hardness | Breaker | | Cutting Speed for Different Grades vc (SFM) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

* Wet cutting is recommended for Titanium alloy.

Cutting Conditions for Shoulder Milling
(inch)

Work Material		No.	Hardness	ф.625", .672"			ф.750", .797"			ф1.000", 1.047"			
		$\phi 16 \mathrm{~mm}, 17 \mathrm{~mm}$		$\phi 20 \mathrm{~mm}, 21 \mathrm{~mm}$			¢ 25 mm , 26mm						
		ap		ae	$\underset{(\mathrm{IPR})}{\mathbf{f}}$	ap	ae	$\underset{(I P R)}{\mathbf{f}}$	ap	ae	$\underset{(\mathrm{IPR})}{\mathbf{f}}$		
P	Mild Steel		1	$\leq 180 \mathrm{HB}$	$\leq .177$	$\leq .315$. 010	$\leq .236$	$\leq .394$. 012	$\leq .295$	$\leq .492$. 014
					. $177-.472$	$\leq .197$. 006	.236-. 551	$\leq .276$. 010	.295-. 669	$\leq .315$. 011
		. $472-.669$			$\leq .118$. 004	. $551-.866$	$\leq .157$. 007	.669-1.063	$\leq .197$. 008	
	Carbon Steel Alloy Steel	2	180-350HB	$\leq .177$	$\leq .315$. 008	$\leq .236$	$\leq .394$. 010	$\leq .295$	$\leq .492$. 012	
				. $177-.472$	$\leq .157$. 006	.236-. 551	$\leq .236$. 008	.295-. 669	$\leq .276$. 010	
				.472-.669	$\leq .079$. 003	. $551-.866$	$\leq .118$. 006	.669-1.063	$\leq .157$. 007	
M	Stainless Steel	1,2,3,4	$\leq 270 \mathrm{HB}$	$\leq .177$	$\leq .315$. 008	$\leq .236$	$\leq .394$. 010	$\leq .295$	$\leq .492$. 012	
				. $177-.472$	$\leq .157$. 006	.236-. 551	$\leq .236$. 008	.295-. 669	$\leq .276$. 010	
				.472-. 669	$\leq .079$. 003	. $551-.866$	$\leq .118$. 006	.669-1.063	$\leq .157$. 007	
K	Cast Iron	1,2	$\leq 350 \mathrm{MPa}$	$\leq .177$	$\leq .315$. 010	$\leq .236$	$\leq .394$. 012	$\leq .295$	$\leq .492$. 014	
				. $177-.472$	$\leq .197$. 006	.236-. 551	$\leq .276$. 010	.295-. 669	$\leq .315$. 011	
				.472-.669	$\leq .118$. 004	. $551-.866$	$\leq .157$. 007	.669-1.063	$\leq .197$. 008	
\mathbf{N}	Aluminum Alloy	1,2,3	-	$\leq .177$	$\leq .433$. 012	$\leq .236$	$\leq .551$. 014	$\leq .295$	$\leq .492$. 016	
				. $177-.472$	$\leq .315$. 008	.236-. 551	$\leq .394$. 012	.295-. 669	$\leq .276$. 013	
				.472-.669	$\leq .197$. 006	. $551-.866$	$\leq .236$. 009	.669-1.063	$\leq .157$. 010	
S	Titanium Alloy	1	-	$\leq .177$	$\leq .315$. 006	$\leq .236$	$\leq .394$. 007	$\leq .295$	$\leq .689$. 008	
				. $177-.472$	$\leq .157$. 004	. $236-.551$	$\leq .236$. 006	.295-. 669	$\leq .492$. 007	
				. $472-.669$	$\leq .079$. 002	. $551-.866$	$\leq .118$. 004	.669-1.063	$\leq .295$. 005	
H	Hardened Steel	1	40-55HRC	$\leq .177$	$\leq .197$. 006	$\leq .236$	$\leq .236$. 008	$\leq .295$	$\leq .276$. 009	
				. $177-.472$	$\leq .118$. 004	.236-. 551	$\leq .157$. 006	.295-. 669	$\leq .157$. 007	
				.472-. 669	$\leq .039$. 002	. $551-.866$	$\leq .079$. 005	.669-1.063	$\leq .079$. 006	

Work Material		No.	Hardness	ф1.250", 1.297"			\$1.500"			
		¢ 32 mm , 33mm		$\phi 40 \mathrm{~mm}$						
		ap		ae	$\underset{(\mathrm{IPR})}{\mathrm{f}}$	ap	ae	$\underset{(\mathrm{fPR})}{\mathrm{f}}$		
P	Mild Steel		1	$\leq 180 \mathrm{HB}$	$\leq .374$	$\leq .630$. 016	$\leq .472$	$\leq .787$. 020
					. $374-.866$	$\leq .433$. 013	.472-1.102	$\leq .512$. 016
		.866-1.378			$\leq .236$. 010	1.102-1.732	$\leq .276$. 012	
	Carbon Steel Alloy Steel	2	180-350HB	$\leq .374$	$\leq .630$. 014	$\leq .472$	$\leq .787$. 016	
				. $374-.866$	$\leq .394$. 011	. $472-1.102$	$\leq .472$. 013	
				.866-1.378	$\leq .197$. 008	1.102-1.732	$\leq .236$. 010	
M	Stainless Steel	1,2,3,4	$\leq 270 \mathrm{HB}$	$\leq .374$	$\leq .630$. 014	$\leq .472$	$\leq .787$. 016	
				. $374-.866$	$\leq .394$. 011	.472-1.102	$\leq .472$. 013	
				.866-1.378	$\leq .197$. 008	1.102-1.732	$\leq .236$. 010	
K	Cast Iron	1,2	$\leq 350 \mathrm{MPa}$	$\leq .374$	$\leq .630$. 016	$\leq .472$	$\leq .787$. 020	
				. $374-.866$	$\leq .433$. 013	.472-1.102	$\leq .512$. 016	
				.866-1.378	$\leq .236$. 010	1.102-1.732	$\leq .276$. 012	
N	Aluminum Alloy	1,2,3	-	$\leq .374$	$\leq .630$. 018	$\leq .472$	$\leq .787$. 022	
				. $374-.866$	$\leq .394$. 015	. $472-1.102$	$\leq .472$. 018	
				.866-1.378	$\leq .197$. 012	1.102-1.732	$\leq .236$. 014	
S	Titanium Alloy	1	-	$\leq .374$	$\leq .906$. 010	$\leq .472$	≤ 1.102	. 011	
				. $374-.866$	$\leq .630$. 008	.472-1.102	$\leq .787$. 009	
				.866-1.378	$\leq .394$. 006	1.102-1.732	$\leq .472$. 007	
H	Hardened Steel	1	40-55HRC	$\leq .374$	$\leq .315$. 010	$\leq .472$	$\leq .394$. 012	
				. $374-.866$	$\leq .197$. 008	.472-1.102	$\leq .236$. 009	
				.866-1.378	$\leq .079$. 006	1.102-1.732	$\leq .079$. 007	

(Note 1) Please pay special attention on the depth of cut when using the short edge type.
(Note 2) When using the G1 breaker (VP15TF), please reduce the feed rate by 20%.
(Note 3) For more information on "No.", please refer to page 11 for cutting speed.
A3 is the depth of cut for the full dual blade portion at the end of the
cutting edge.
Beyond the range of A3 where overlapping occurs, there is an
area where the cutting edge becomes single bladed, not forming
full dual blade configuration.
As such, please pay special attention to the relationship between
depth of cut and feed.
In general, the edge at the border of cut tends to suffer from
damages. At large depth of cut operations, applying the following
depth of cut (\mathbf{t}, at which the edge is full dual bladed at the border
of cut, is recommended to prevent damage to the cutting edge.
(inch)

Cutting Conditions for Slotting

Work Material		No.	Hardness	ф.625", .672"		ф.750", .797"		\$1.000", 1.047"		
		$\phi 16 \mathrm{~mm}, 17 \mathrm{~mm}$		$\phi 20 \mathrm{~mm}, 21 \mathrm{~mm}$		¢ $25 \mathrm{~mm}, 26 \mathrm{~mm}$				
		ap		$\underset{(\mathrm{IPR})}{\mathbf{f}}$	ap	$\underset{(\mathrm{IPR})}{\mathbf{f}}$	ap	$\underset{(I P R)}{\mathbf{f}}$		
\mathbf{P}	Mild Steel		1	$\leq 180 \mathrm{HB}$	$\leq .177$. 006	$\leq .236$. 007	$\leq .295$. 008
					. $177-.472$. 004	. $236-.551$. 006	.295-. 669	. 006
		. $472-.669$. 003	. $551-.866$. 004	.669-1.063	. 005	
	Carbon Steel Alloy Steel	2	180-350HB	$\leq .177$. 006	$\leq .236$. 006	$\leq .295$. 007	
				. $177-.472$. 004	. $236-.551$. 005	.295-. 669	. 006	
				. $472-.669$. 002	.551-.866	. 004	.669-1.063	. 004	
M	Stainless Steel	1,2,3,4	$\leq 270 \mathrm{HB}$	$\leq .177$. 006	$\leq .236$. 006	$\leq .295$. 007	
				. $177-.472$. 004	. $236-.551$. 005	.295-. 669	. 006	
				.472-. 669	. 002	. $551-.866$. 004	.669-1.063	. 004	
K	Cast Iron	1,2	$\leq 350 \mathrm{MPa}$	$\leq .177$. 006	$\leq .236$. 007	$\leq .295$. 008	
				. $177-.472$. 004	. $236-.551$. 006	.295-. 669	. 006	
				. $472-.669$. 003	. $551-.866$. 004	.669-1.063	. 005	
N	Aluminum Alloy	1,2,3	-	$\leq .177$. 007	$\leq .236$. 008	$\leq .295$. 009	
				. $177-.472$. 005	.236-. 551	. 006	.295-. 669	. 007	
				.472-. 669	. 004	.551-.866	. 005	.669-1.063	. 006	
S	Titanium Alloy	1	-	$\leq .177$. 004	$\leq .236$. 005	$\leq .295$. 006	
				. $177-.472$. 002	. $236-.551$. 003	.295-. 669	. 004	
				. $472-.669$. 001	. $551-.866$. 002	.669-1.063	. 003	
H	Hardened Steel	1	40-55HRC	$\leq .177$. 004	$\leq .236$. 005	$\leq .295$. 006	
				. $177-.472$. 003	. $236-.551$. 004	.295-. 669	. 005	

Work Material		No.	Hardness	$\begin{gathered} \phi 1.250 ", 1.297 " \\ \hline \phi 32 \mathrm{~mm}, 33 \mathrm{~mm} \end{gathered}$		\$1.500" $\phi 40 \mathrm{~mm}$		
		ap		$\underset{(\mathrm{IPR})}{\mathbf{f}}$	ap	$\underset{(I P R)}{f}$		
\mathbf{P}	Mild Steel		1	$\leq 180 \mathrm{HB}$	$\leq .374$. 010	$\leq .472$. 012
		. $374-.866$. 008	.472-1.102	. 010	
		.866-1.378			. 006	1.102-1.732	. 007	
	Carbon Steel Alloy Steel	2	180-350HB	$\leq .374$. 008	$\leq .472$. 010	
				. $374-.866$. 006	.472-1.102	. 008	
				.866-1.378	. 005	1.102-1.732	. 006	
M	Stainless Steel	1,2,3,4	$\leq 270 \mathrm{HB}$	$\leq .374$. 008	$\leq .472$. 010	
				. $374-.866$. 006	.472-1.102	. 008	
				.866-1.378	. 005	1.102-1.732	. 006	
K	Cast Iron	1,2	$\leq 350 \mathrm{MPa}$	$\leq .374$. 010	$\leq .472$. 012	
				. $374-.866$. 008	.472-1.102	. 010	
				.866-1.378	. 006	1.102-1.732	. 007	
N	Aluminum Alloy	1,2,3	-	$\leq .374$. 011	$\leq .472$. 013	
				. $374-.866$. 009	.472-1.102	. 011	
				.866-1.378	. 006	1.102-1.732	. 008	
S	Titanium Alloy	1	-	$\leq .374$. 007	$\leq .472$. 009	
				. $374-.866$. 005	.472-1.102	. 008	
				.866-1.378	. 004	1.102-1.732	. 006	
H	Hardened Steel	1	40-55HRC	$\leq .374$. 006	$\leq .472$. 007	
				. $374-.866$. 005	.472-1.102	. 006	

(Note 1) Please pay special attention on the depth of cut when using the short edge type.
(Note 2) When using the G1 breaker (VP15TF), please reduce the feed rate by 20%.
(Note 3) For more information on "No.", please refer to page 11 for cutting speed.

For Helical Cutting

Work Material		No.	Hardness	ф.625", .672"				ф.750", .797"				¢1.000", 1.047"				
		$\phi 16 \mathrm{~mm}, 17 \mathrm{~mm}$		¢ $20 \mathrm{~mm}, 21 \mathrm{~mm}$				¢ $25 \mathrm{~mm}, 26 \mathrm{~mm}$								
		DH		APMX	$\underset{(I P R)}{\mathbf{f}}$	$\left\lvert\, \begin{gathered} \mathbf{P} \\ \text { (inch/pass) } \end{gathered}\right.$	DH	APMX	$\underset{(\mathrm{IPR})}{\mathbf{f}}$	$\left\lvert\, \begin{gathered} \mathbf{P} \\ \text { (inch/pass) } \end{gathered}\right.$	DH	APMX	$\underset{(\mathrm{IPR})}{\mathbf{f}}$	P (inch/pass)		
P	Mild Steel		1	$\leq 180 \mathrm{HB}$. 787	. 315	. 006	. 017	. 945	. 394	. 007	. 017	1.181	. 492	. 008	. 022
					. 984	. 472	. 006	. 039	1.181	. 591	. 006	. 043	1.496	. 748	. 007	. 056
		1.142			. 630	. 005	. 056	1.417	. 787	. 006	. 069	1.772	. 984	. 006	. 087	
	Carbon Steel Alloy Steel	2	180-350HB	. 787	. 315	. 006	. 013	. 945	. 394	. 006	. 013	1.181	. 492	. 007	. 016	
				. 984	. 472	. 005	. 029	1.181	. 591	. 006	. 032	1.496	. 748	. 006	. 042	
				1.142	. 630	. 004	. 042	1.417	. 787	. 005	. 052	1.772	. 984	. 006	. 065	
M	Stainless Steel	1,2,3,4	$\leq 270 \mathrm{HB}$. 787	. 118	. 006	. 009	. 945	. 157	. 006	. 009	1.181	. 197	. 007	. 011	
				. 984	. 197	. 005	. 019	1.181	. 276	. 006	. 022	1.496	. 354	. 006	. 028	
				1.142	. 315	. 004	. 028	1.417	. 394	. 005	. 035	1.772	. 492	. 006	. 043	
K	Cast Iron	1,2	$\leq 350 \mathrm{MPa}$. 787	. 394	. 006	. 022	. 945	. 551	. 007	. 022	1.181	. 709	. 008	. 027	
				. 984	. 512	. 006	. 048	1.181	. 669	. 006	. 054	1.496	. 827	. 007	. 070	
				1.142	. 630	. 005	. 070	1.417	. 787	. 006	. 086	1.772	. 984	. 006	. 108	
N	Aluminum Alloy	1,2,3	-	. 787	. 394	. 007	. 017	. 945	. 551	. 008	. 017	1.181	. 709	. 009	. 022	
				. 984	. 512	. 006	. 039	1.181	. 669	. 007	. 043	1.496	. 827	. 008	. 056	
				1.142	. 630	. 006	. 056	1.417	. 787	. 006	. 069	1.772	. 984	. 007	. 087	
S	Titanium Alloy	1	-	. 787	. 118	. 004	. 009	. 945	. 157	. 004	. 009	1.181	. 197	. 005	. 011	
				. 984	. 197	. 003	. 019	1.181	. 276	. 004	. 022	1.496	. 354	. 004	. 028	
				1.142	. 315	. 003	. 028	1.417	. 394	. 003	. 035	1.772	. 492	. 004	. 043	
H	Hardened Steel	1	40-55HRC	. 787	. 118	. 004	. 009	. 945	. 157	. 005	. 009	1.181	. 197	. 006	. 011	
				. 984	. 197	. 003	. 019	1.181	. 276	. 004	. 022	1.496	. 354	. 005	. 028	
				1.142	. 315	. 002	. 028	1.417	. 394	. 003	. 035	1.772	. 492	. 004	. 043	

Work Material		No.	Hardness	¢1.250", 1.297"				\$1.500"				
		¢ 32 mm , 33mm		$\phi 40 \mathrm{~mm}$								
		DH		APMX	$\underset{(\mathrm{IPR})}{\mathbf{f}}$	$\left\lvert\, \begin{gathered} \mathbf{P} \\ \text { (inch/pass) } \end{gathered}\right.$	DH	APMX	$\underset{(\mathrm{IPR})}{\mathbf{f}}$	$\underset{\text { (inch/pass) }}{\mathbf{P}}$		
P	Mild Steel		1	$\leq 180 \mathrm{HB}$	1.496	. 630	. 010	. 026	1.890	. 787	. 012	. 035
					1.890	. 945	. 009	. 069	2.362	1.181	. 010	. 086
		2.283			1.260	. 008	. 112	2.835	1.575	. 009	. 138	
	Carbon Steel Alloy Steel	2	180-350HB	1.496	. 630	. 008	. 019	1.890	. 787	. 010	. 026	
				1.890	. 945	. 007	. 052	2.362	1.181	. 009	. 065	
				2.283	1.260	. 006	. 084	2.835	1.575	. 008	. 104	
N	Stainless Steel	1,2,3,4	$\leq 270 \mathrm{HB}$	1.496	. 236	. 008	. 013	1.890	. 315	. 010	. 017	
				1.890	. 433	. 007	. 035	2.362	. 551	. 009	. 043	
				2.283	. 630	. 006	. 056	2.835	. 787	. 008	. 069	
K	Cast Iron	1,2	$\leq 350 \mathrm{MPa}$	1.496	. 866	. 010	. 032	1.890	1.102	. 012	. 043	
				1.890	1.063	. 009	. 086	2.362	1.339	. 010	. 108	
				2.283	1.260	. 008	. 141	2.835	1.575	. 009	. 173	
N	Aluminum Alloy	1,2,3	-	1.496	. 866	. 011	. 026	1.890	1.102	. 013	. 035	
				1.890	1.063	. 009	. 069	2.362	1.339	. 011	. 086	
				2.283	1.260	. 009	. 112	2.835	1.575	. 009	. 138	
S	Titanium Alloy	1	-	1.496	. 236	. 006	. 013	1.890	. 315	. 007	. 017	
				1.890	. 433	. 005	. 035	2.362	. 551	. 006	. 043	
				2.283	. 630	. 004	. 056	2.835	. 787	. 006	. 069	
H	Hardened Steel	1	40-55HRC	1.496	. 236	. 006	. 013	1.890	. 315	. 007	. 017	
				1.890	. 433	. 006	. 035	2.362	. 551	. 006	. 043	
				2.283	. 630	. 005	. 056	2.835	. 787	. 006	. 069	

Helical grooving is strongly recommended for machining of tempered steel.
(Note 1) When using the G1 breaker (VP15TF), please reduce the feed rate by 20%.
(Note 2) For more information on "No.", please refer to page 11 for cutting speed.

- How to calculate the theoretical center of the cutter path.

- Min. machined hole diameter at helical cutting : 1.2DC Max. machined hole diameter at helical cutting : 1.8DC
- For chip discharge, please always apply air blow. (When aluminum cutting, please use coolant.)

When helical cutting, it is recommended to reduce the feed rate by 40%.
When using the G1 breaker (VP15TF), please reduce the feed rate by 20%.

- Drilling

The recommended drilling depth is less than .5DC.

- Use step feed when drilling (.010.020 inch) to ensure that the chips are effectively broken.
- Use internal or external cooling to ensure that the chips disposal is sufficiently achieved.
The chips generated can discharge in any direction, so ensure that adequate safety precautions are taken.

Work Material		No.	Hardness	$\begin{gathered} \phi .625 ", .672 " \\ \hline \phi 16 \mathrm{~mm}, 17 \mathrm{~mm} \\ \hline \end{gathered}$		$\begin{gathered} \phi .750 ", .797 " \\ \hline \phi 20 \mathrm{~mm}, 21 \mathrm{~mm} \end{gathered}$		$\begin{aligned} & \phi 1.000 ", 1.047 " \\ & \hline \phi 25 \mathrm{~mm}, 26 \mathrm{~mm} \\ & \hline \end{aligned}$		$\boldsymbol{\phi} 1.250 ", 1.297 "$ $\$ 32 \mathrm{~mm}, 33 \mathrm{~mm}, 35 \mathrm{~mm}$		$\begin{aligned} & \phi 1.500 " \\ & \hline \phi 40 \mathrm{~mm} \\ & \hline \end{aligned}$		
		$\underset{(\mathrm{IPR})}{\mathbf{f}}$		Step	$\underset{(\mathrm{IPR})}{\mathbf{f}}$	Step	$\underset{(\mathrm{IPR})}{\mathbf{f}}$	Step	$\underset{(\mathrm{IPR})}{\mathbf{f}}$	Step	$\underset{(\mathrm{IPR})}{\mathbf{f}}$	Step		
P	Mild Steel		1	$\leq 180 \mathrm{HB}$. 001	. 008	. 002	. 012	. 002	. 012	. 002	. 012	. 002	. 012
	Carbon Steel Alloy Steel	2	180-350HB	. 001	. 008	. 002	. 012	. 002	. 012	. 002	. 012	. 002	. 012	
M	Stainless Steel	1,2,3,4	$\leq 270 \mathrm{HB}$. 001	. 006	. 002	. 010	. 002	. 010	. 002	. 010	. 002	. 010	
K	Gray Cast Iron	1	$\leq 350 \mathrm{MPa}$. 002	. 016	. 002	. 020	. 002	. 020	. 003	. 020	. 003	. 020	
N	Aluminum Alloy	1,2,3	-	. 002	. 008	. 002	. 012	. 002	. 012	. 003	. 012	. 003	. 012	
H	Hardened Steel	1	40-55HRC	. 001	. 006	. 001	. 010	. 001	. 010	. 002	. 010	. 002	. 010	

Helical grooving is strongly recommended for machining of tempered steel.
(Note 1) When using the G1 breaker (VP15TF), please reduce the feed rate by 20%.
(Note 2) For more information on "No.", please refer to page 11 for cutting speed.
For Ramping

- When machining steel the recommended ramping angle is 3°. If a ramping angle larger than 3° is used, then the chips may not be broken effectively resulting in chips wrapping around the tool.
- When ramping, it is recommended to reduce the feed rate by 40%.

