
Recommended Cutting Conditions

Effective Angle

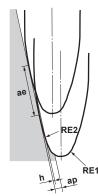
Please refer to the table below for the use of the nose radius (RE1) and tangential form radius (RE2).

				(inch)		
Ond on November	Nose	Radius	Tangential Form Radius			
Order Number	RE1	Effective Angle	RE2	Effective Angle		
VQT6URR020R075S08	.079 (2mm)	76.6°	2.953 (75mm)	13.4°		
VQT6URR020R085S10	.079 (2mm)	74.5°	3.346 (85mm)	15.5°		
VQT6URR030R075S10	.118 (3mm)	76.4°	2.953 (75mm)	13.6°		
VQT6URR040R100S12	.157 (4mm)	78.3°	3.937 (100mm)	11.7°		

■ Side Milling with the Use of the Tangential Form Radius (RE2)

(inch)

															(111011)
W	/orkpiece	e Mater	ial	Mild Steels Carbon St	(180—280HB)	Austenitic Stainless Steels (≤200HB) Titanium Alloys				Aluminum Alloys (Si < 5%)					
D	DC RE2		E2	Revolution	Feed Rate	Depth of Cut	Depth of Cut	Revolution	Feed Rate	Depth of Cut	Depth of Cut	Revolution	Feed Rate	Depth of Cut	Depth of Cut
mm	inch	mm	inch	(min ⁻¹)	(IPM)	ae	ар	(min ⁻¹)	(IPM)	ae	ар	(min ⁻¹)	(IPM)	ae	ар
8	.315	75	2.953	8000	94.5	.031	.002012	3200	30.3	.031	.002012	16000	189.0	.031	.002012
10	.394	85	3.346	6400	74.8	.033	.002012	2500	23.6	.033	.002012	13000	153.5	.033	.002012
10	.394	75	2.953	6400	74.8	.031	.002012	2500	23.6	.031	.002012	13000	153.5	.031	.002012
12	.472	100	3.937	5300	63.0	.035	.002012	2100	19.7	.035	.002012	11000	129.9	.035	.002012


Note 1) SMART MIRACLE coating has very low electrical conductivity; therefore, an external contact type of tool setter (electric transmitted) may not work.

When measuring the tool length, an internal contact/non-electric type or laser tool setter is recommended.

Note 2) Recommended for finish cutting only.

Note 3) The tool contact part differs between the nose radius and tangential form radius depending on machining geometries and tilt angles.

Select suitable cutting conditions according to tool contact parts.

■ Depth of Cut Calculation Table Based on Tangential Form Radius (RE2) and Cusp Height (h)

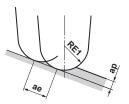
(inch)

Order Number	RE2	Cusp Height h	.000004	.000012	.000020	.000031	.000039	.000118	.000197	.000315
VQT6URR020R075S08	2.953 (75mm)		.0096	.0167	.0216	.0273	.0305	.0528	.0682	.0863
VQT6URR030R075S10			.0096	.0167	.0216	.0273	.0305	.0528	.0682	.0863
VQT6URR020R085S10		Depth of Cut ae	.0103	.0178	.0230	.0291	.0325	.0562	.0726	.0918
VQT6URR040R100S12	3.937 (100mm)		.0111	.0193	.0249	.0315	.0352	.0610	.0787	.0996

Recommended Cutting Conditions

Fillet Milling with the Use of the Nose Radius (RE1)

(inch)


W	/orkpiec	e Mater	ial	1	s (≤180HB teels, Alloy) Steels (180)—280HB)	Austenitic Titanium	Stainless S Alloys	Steels (≤20)0HB)	Aluminum Alloys (Si < 5%)			
DC RE1		Revolution (min ⁻¹)	Feed Rate (IPM)	Depth of Cut	Depth of Cut	Revolution (min ⁻¹)	Feed Rate (IPM)	Depth of Cut	Depth of Cut	Revolution (min ⁻¹)	Feed Rate (IPM)	Depth of Cut	Depth of Cut		
8	.315	2	.079	16000	94.5	.016	.039	6400	22.8	.016	.039	32000	189.0	.016	.039
10	.394	2	.079	16000	94.5	.016	.039	6400	22.8	.016	.039	32000	189.0	.016	.039
10	.394	3	.118	11000	66.9	.024	.059	4200	15.0	.024	.059	21000	126.0	.024	.059
12	.472	4	.157	8000	47.2	.031	.079	3200	11.4	.031	.079	16000	94.5	.031	.079

Note 1) SMART MIRACLE coating has very low electrical conductivity; therefore, an external contact type of tool setter (electric transmitted) may not work.

When measuring the tool length, an internal contact/non-electric type or laser tool setter is recommended.

Note 2) Recommended for finish cutting only.

Note 3) The tool contact part differs between the nose radius and tangential form radius depending on machining geometries and tilt angles. Select suitable cutting conditions according to tool contact parts.

