Identification(Shoulder Milling)

Reduce the cutting parameters by the coefficient values shown according to the length of overhang. For long edge and oversize types heads refer to their specific recommended conditions.

(inch)

Workpiece Material	Copper Copper	Alloy Steels, Mild Alloys	Steels,	Pre-hardened S Alloy Steels, Allo	teels, Carbon Ste by Tool Steels	els,	Austenitic Stainless Steels, Ferritic and Martensitic Stainless Steels, Titanium Alloys			
L/D	Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	
2	100%	100%	100%	100%	100%	100%	100%	100%	100%	
3	100%	100%	100%	100%	100%	100%	100%	100%	100%	
4	80%	90%	70%	80%	90%	70%	80%	90%	70%	
5	60%	80%	40%	60%	80%	40%	60%	80%	40%	
6	50%	70% 30%		50% 70%		30%	50%	70%	30%	
7	40% 70% 20%		40%	70%	20%	30%	60%	20%		
8	40% 60% 10%		40%	60%	10%	30%	50%	10%		
9	30% 60% 10%			30%	60%	10%	20%	50%	10%	

Workpiece Material	Precipitation Ha	rdening Stainless m Alloys	Steels,	Heat Resistant Alloys					
				Inconel718					
L/D	Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	Revolution n (min-1)	n fz vviatr				
2	100%	100%	100%	100%	100%	100%			
3	100%	100%	100%	100%	100%	100%			
4	80%	90%	70%	80%	90%	70%			
5	60%	80%	40%	60%	80%	40%			
6	50%	70%	30%	50%	70%	30%			
7	30%	60%	20%	30%	60%	20%			
8	30%	50%	10%	30%	50%	10%			
9	20%	50%	10%	20%	50%	10%			

Recommended Cutting Conditions

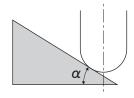
■ Shoulder Milling (L/D=5)

(inch)

		piece erial		Pre-hardened Steels, Alloy Tool Steels							Hardened Steels (40–55HRC)					
Inclination Angle DC RE		$\alpha \leq$ Revolution	Feed Rate	α>15° Revolution Feed Rate		Depth of Cut	Width of Cut	Revolution Feed Rate		α>15° Revolution Feed Rate		Depth of Cut	Width of Cut			
(mm)	(inch)	(mm)	(inch)	(min-1)	vf (IPM)	n (min-1)	vf (IPM)			n (min-1)	vf (IPM)	n (min-1)	vf (IPM)			
10	.394	5	.197	5600	145.7	3700	66.9	.028	.102	4800	102.4	3200	47.2	.020	.079	
12	.472	6	.236	4600	118.1	3100	55.1	.039	.126	4000	86.6	2700	38.2	.028	.098	
16	.630	8	.315	3500	90.6	2300	39.4	.043	.150	3000	63.0	2000	28.3	.035	.138	
20	.787	10	.394	2800	70.9	1800	31.9	.047	.189	2400	51.2	1600	22.8	.043	.165	
	Dep C	th of ut							ae	ар						

■ Shoulder Milling (L/D=7)

(inch)


				Pre-harde	ned Steels,	Alloy Tool S	iteels		Hardened Steels (40–55HRC)							
Workpiece Material																
Inclination Angle			α≤	15°	α>15°		Depth of Cut	Midth of Cut	α≤15°		α>15°		Donth of Cut	Width of Cut		
[DC RE		E	Revolution n	Feed Rate	Revolution n	Feed Rate vf	ap	ae	Revolution n	Feed Rate vf	Revolution n	Feed Rate	ap	ae	
(mm)	(inch)	(mm)	(inch)	(min ⁻¹)	(IPM)	(min ⁻¹)	(IPM)			(min ⁻¹)	(IPM)	(min ⁻¹)	(IPM)			
10	.394	5	.197	3800	90.6	2500	38.6	.020	.051	3200	47.2	2100	21.3	.016	.039	
12	.472	6	.236	3200	74.8	2100	32.3	.028	.063	2700	43.3	1700	16.9	.024	.051	
16	.630	8	.315	2400	55.1	1600	24.4	.031	.075	2000	30.7	1300	13.0	.028	.071	
20	.787	10	.394	1900	43.3	1300	20.1	.035	.094	1600	24.4	1000	10.2	.031	.083	
	Dep	th of ut							ae	######################################						

Note 1) The irregular helix flute end mill has a larger effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece material installation is poor, vibration or abnormal sound can occur.

In this case, please reduce the revolution and the feed rate proportionately, or set a lower depth of cut.

Note 2) If the depth of cut is smaller, the revolution and the feed rate can be increased.

Note 3) α is the inclination angle of the machined surface.

