Identification(Shoulder Milling)

Reduce the cutting parameters by the coefficient values shown according to the length of overhang. For long edge and oversize types heads refer to their specific recommended conditions.

(inch)

Workpiece Material	Carbon Steels, Alloy Steels, Mild Steels, Copper, Copper Alloys			Pre-hardened S Alloy Steels, Allo	teels, Carbon Ste by Tool Steels	els,	Austenitic Stainless Steels, Ferritic and Martensitic Stainless Steels, Titanium Alloys			
L/D	Revolution n (min-1)	n fz Width of Cut		Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	
2	100%	100%	100%	100%	100%	100%	100%	100%	100%	
3	100%	100%	100%	100%	100%	100%	100%	100%	100%	
4	80%	90%	70%	80%	90%	70%	80%	90%	70%	
5	60%	80%	40%	60%	80%	40%	60%	80%	40%	
6	50%	70%	30%	50%	70%	30%	50%	70%	30%	
7	40%	70%	20%	40%	70%	20%	30%	60%	20%	
8	40%	60%	10%	40%	60%	10%	30%	50%	10%	
9	30%	60%	10%	30%	60%	10%	20%	50%	10%	

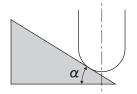
Workpiece Material	Precipitation Ha	rdening Stainless m Alloys	Steels,	Heat Resistant Alloys				
				Inconel718				
L/D	Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	Revolution n (min-1)	Feed per Tooth fz (IPT) Width of Cu			
2	100%	100%	100%	100%	100%	100%		
3	100%	100%	100%	100%	100%	100%		
4	80%	90%	70%	80%	90%	70%		
5	60%	80%	40%	60%	80%	40%		
6	50%	70%	30%	50%	70%	30%		
7	30%	60%	20%	30%	60%	20%		
8	30% 50%		10%	30%	30% 50%			
9	20%	50%	10%	20%	50%	10%		

INX-B4HV/INX-B4HV-E Ball nose head, 4 flute, Irregular curve (With/Without coolant hole)

Recommended Cutting Conditions

Shoulder Milling (inch)

	kpiece aterial	Carbon Steels, Alloy Steels, Mild Steels, Pre-hardened Steels, Copper, Copper Alloys						Austenitic Stainless Steels, Ferritic and Martensitic Stainless Steels, Cobalt Chromium Alloys, Titanium Alloys					
Inclination Angle α≤15°			:15°	α>15°		D # 60.1		α≤15°		α>15°			
(mm)	RE (inch)	Revolution n (min-1)	Feed Rate vf (IPM)	Revolution n (min-1)	Feed Rate vf (IPM)	Depth of Cut ap	Width of Cut ae	Revolution n (min-1)	Feed Rate vf (IPM)	Revolution n (min-1)	Feed Rate vf (IPM)	Depth of Cut ap	Width of Cut ae
	.1875	10000	168.0	6700	75.0	.038	.100	7500	123.0	5000	52.0	.038	.100
5	.1969	9500	157.5	6400	71.7	.039	.100	7200	118.1	4800	49.9	.039	.100
6	.2362	8000	156.8	5300	70.0	.047	.120	6000	117.6	4000	49.6	.047	.120
	.2500	7500	147.0	5000	66.0	.050	.120	5700	111.7	3700	45.9	.050	.120
	.3125	6000	127.2	4000	56.0	.063	.160	4500	99.0	3000	42.0	.063	.160
8	.3150	6000	127.2	4000	56.0	.063	.160	4500	99.0	3000	42.0	.063	.160
	.3750	5000	122.0	3300	51.5	.075	.190	3800	95.8	2500	41.0	.075	.190
10	.3937	4800	117.1	3200	49.9	.079	.200	3600	90.7	2400	39.4	.079	.200
12.5	.4921	3800	95.8	2500	39.0	.098	.240	2900	73.1	1900	31.2	.098	.240
	.5000	3800	95.8	2500	39.0	.100	.240	2800	70.6	1900	31.2	.100	.240
Dept	h of Cut	ut ap											


		Heat Resistant Alloys									
Workpiece Material		Inconel718									
Inclinat	ion Angle	α≤	15°	α>	15°	Darth of Out	Made to t				
(mm)	(inch)	Revolution n (min-1)	Feed Rate vf (IPM)	Revolution n (min-1)	Feed Rate vf (IPM)	Depth of Cut ap	Width of Cut ae				
	.1875	2000	17.6	1300	7.3	.019	.038				
5	.1969	1900	16.7	1300	7.3	.020	.039				
6	.2362	1600	14.1	1100	6.2	.024	.047				
	.2500	1500	13.2	990	5.5	.025	.050				
	.3125	1200	11.5	790	5.1	.031	.063				
8	.3150	1200	11.5	790	5.1	.031	.063				
	.3750	990	9.5	660	4.2	.038	.075				
10	.3937	950	9.1	630	4.0	.039	.079				
12.5	.4921	760	7.3	500	3.2	.047	.100				
	.5000	740	7.1	500	3.2	.048	.100				
Depth of Cut											

Note 1) The irregular helix flute end mill has a larger effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece material installation is poor, vibration or

In this case, please reduce the revolution and the feed rate proportionately, or set a lower depth of cut.

Note 2) If the depth of cut is smaller, the revolution and the feed rate can be increased.

Note 3) For stainless steels, titanium alloys and heat resistant alloys, the use of water-soluble coolant is effective. Note 4) α is the inclination angle of the machined surface.

