Identification(Shoulder Milling)

Reduce the cutting parameters by the coefficient values shown according to the length of overhang. For long edge and oversize types heads refer to their specific recommended conditions.

(inch)

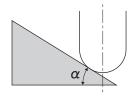
Workpiece Material	Carbon Steels, Alloy Steels, Mild Steels, Copper, Copper Alloys			Pre-hardened S Alloy Steels, Allo	teels, Carbon Ste by Tool Steels	els,	Austenitic Stainless Steels, Ferritic and Martensitic Stainless Steels, Titanium Alloys			
L/D	Revolution n (min-1)	fz Width of Cut		Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	
2	100%	100%	100%	100%	100%	100%	100%	100%	100%	
3	100%	100%	100%	100%	100%	100%	100%	100%	100%	
4	80%	90%	70%	80%	90%	70%	80%	90%	70%	
5	60%	80%	40%	60%	80%	40%	60%	80%	40%	
6	50%	70%	30%	50%	70%	30%	50%	70%	30%	
7	40%	70%	20%	40%	70%	20%	30%	60%	20%	
8	40%	60%	10%	40%	60%	10%	30%	50%	10%	
9	30%	60%	10%	30%	60%	10%	20%	50%	10%	

Workpiece	Precipitation Ha	rdening Stainless m Alloys	Steels,	Heat Resistant Alloys					
Material				Inconel718					
L/D	Revolution n fz (IPT) Width of Cut ae			Revolution n (min-1)	Feed per Tooth fz (IPT) Width of C				
2	100%	100%	100%	100%	100%	100%			
3	100%	100%	100%	100%	100%	100%			
4	80%	90%	70%	80%	90%	70%			
5	60%	80%	40%	60%	80%	40%			
6	50%	70%	30%	50%	70%	30%			
7	30%	60%	20%	30%	60%	20%			
8	30% 50% 1		10%	30%	50%	10%			
9	20%	50%	10%	20%	50%	10%			

Recommended Cutting Conditions

Shoulder Milling (inch)

	kpiece terial							Austenitic Stainless Steels, Ferritic and Martensitic Stainless Steels, Cobalt Chromium Alloys, Titanium Alloys					
Inclination Angle $\alpha \leq 1$			15°	α>15°		D. H. KO.		α≤15°		α>15°		D 11 10 1	
(mm)	(inch)	Revolution n (min-1)	Feed Rate vf (IPM)	Revolution n (min-1)	Feed Rate vf (IPM)	Depth of Cut ap	Width of Cut ae	Revolution n (min-1)	Feed Rate vf (IPM)	Revolution n (min-1)	Feed Rate vf (IPM)	Depth of Cut ap	Width of Cut ae
	.1875	10000	252.0	6700	112.6	.019	.075	7500	184.5	5000	78.0	.019	.075
5	.1969	9500	236.2	6400	107.5	.020	.079	7200	177.1	4800	74.9	.020	.079
6	.2362	8000	235.2	5300	104.9	.024	.094	6000	176.4	4000	74.4	.024	.094
	.2500	7500	220.5	5000	99.0	.025	.100	5700	167.6	3700	68.8	.025	.100
	.3125	6000	190.8	4000	84.0	.031	.125	4500	148.5	3000	63.0	.031	.125
8	.3150	6000	190.8	4000	84.0	.031	.126	4500	148.5	3000	63.0	.031	.126
	.3750	5000	183.0	3300	77.2	.038	.150	3800	143.6	2500	61.5	.038	.150
10	.3937	4800	175.7	3200	74.9	.039	.157	3600	136.1	2400	59.0	.039	.157
12.5	.4921	3800	143.6	2500	58.5	.047	.197	2900	109.6	1900	46.7	.047	.197
	.5000	3800	143.6	2500	58.5	.048	.200	2800	105.8	1900	46.7	.048	.200
Deptl	n of Cut	F Cut											


Workpiece Material		Heat Resistant Alloys									
		Inconel718									
Inclinat	ion Angle	α≤	15°	α>	15°	Danth of Out	Marian Co.				
F	RE	Revolution	Feed Rate	Revolution	Feed Rate	Depth of Cut ap	Width of Cut ae				
(mm)	(inch)	(min-1)	(IPM)	(min-1)	(IPM)						
	.1875	2000	26.4	1300	10.9	.019	.038				
5	.1969	1900	25.1	1300	10.9	.020	.039				
6	.2362	1600	21.1	1100	9.2	.024	.047				
	.2500	1500	19.8	990	8.3	.025	.050				
	.3125	1200 17.3		790	7.6	.031	.063				
8	.3150	1200	17.3	790	7.6	.031	.063				
	.3750	990	14.3	660	6.3	.038	.075				
10	.3937	950	13.7	630	6.0	.039	.079				
12.5	.4921	760	10.9	500	4.8	.047	.098				
	.5000	740	10.7	500	4.8	.048	.100				
Depth	n of Cut	ae ae ap									

Note 1) The irregular helix flute end mill has a larger effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece material installation is poor, vibration or abnormal sound can occur.

In this case, please reduce the revolution and the feed rate proportionately, or set a lower depth of cut.

Note 2) If the depth of cut is smaller, the revolution and the feed rate can be increased.

Note 3) For stainless steels, titanium alloys and heat resistant alloys, the use of water-soluble coolant is effective. Note 4) α is the inclination angle of the machined surface.

