Identification(Shoulder Milling)

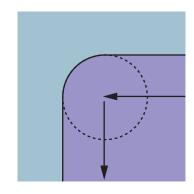
Reduce the cutting parameters by the coefficient values shown according to the length of overhang. For long edge and oversize types heads refer to their specific recommended conditions.

(inch)

Workpiece Material	Carbon Steels, Alloy Steels, Mild Steels, Copper, Copper Alloys			Pre-hardened S Alloy Steels, Allo	teels, Carbon Ste by Tool Steels	els,	Austenitic Stainless Steels, Ferritic and Martensitic Stainless Steels, Titanium Alloys			
L/D	Revolution n (min-1)	n fz Width of Cut		Revolution n (min-1)	Feed per Tooth fz (IPT) Width of Cut ae		Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	
2	100%	100%	100%	100%	100%	100%	100%	100%	100%	
3	100%	100%	100%	100%	100%	100%	100%	100%	100%	
4	80%	90%	70%	80%	90%	70%	80%	90%	70%	
5	60%	80%	40%	60%	80%	40%	60%	80%	40%	
6	50%	70%	30%	50%	70%	30%	50%	70%	30%	
7	40%	70%	20%	40%	70%	20%	30%	60%	20%	
8	40%	60%	10%	40%	60%	10%	30%	50%	10%	
9	30%	60%	10%	30%	60%	10%	20%	50%	10%	

Workpiece	Precipitation Ha	rdening Stainless m Alloys	Steels,	Heat Resistant Alloys				
Material				Inconel718				
L/D	Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae		
2	100%	100%	100%	100%	100%	100%		
3	100%	100%	100%	100%	100%	100%		
4	80%	90%	70%	80%	90%	70%		
5	60%	80%	40%	60%	80%	40%		
6	50%	70%	30%	50%	70%	30%		
7	30%	60%	20%	30%	60%	20%		
8	30%	50%	10%	30%	50%	10%		
9	20%	50%	10%	20%	50%	10%		

INX-C6HV/C10HV/C12HV Corner radius head, Multi-flute, Irregular helix


Recommended Cutting Conditions

Shoulder Milling (inch)

			Austenitic Stainless Steels, Ferritic and Martensitic Stainless Steels, Titanium Alloys			Precipitation Hardening Stainless Steels, Cobalt Chromium Alloys							
DC		Revolution n	Feed Rate	Depth of Cut		Revolution	Feed Rate	Depth of Cut		Revolution n	Feed Rate		Width of Cut
(mm)	,	(min-1)	(IPM)	ар	ae	(min-1)	(IPM)	ар	ae	(min-1)	(IPM)	ар	ae
	.3750	6700	112.6	.375	.038	5000	84.0	.375	.038	3400	57.1	.375	.038
10	.3937	6400	107.5	.394	.039	4800	80.6	.394	.039	3200	53.8	.394	.039
12	.4724	5300	104.9	.472	.047	4000	79.2	.472	.047	2700	53.5	.472	.047
	.5000	5000	99.0	.500	.050	3700	73.3	.500	.050	2500	49.5	.500	.050
	.6250	4000	140.0	.625	.025	3000	105.0	.625	.025	2000	70.0	.625	.025
16	.6299	4000	140.0	.630	.025	3000	105.0	.630	.025	2000	70.0	.630	.025
	.7500	3300	154.4	.750	.030	2500	117.0	.750	.030	1700	79.6	.750	.030
20	.7874	3200	149.8	.787	.031	2400	112.3	.787	.031	1600	74.9	.787	.031
25	.9843	2500	117.0	.984	.039	1900	88.9	.984	.039	1300	60.8	.984	.039
	1.0000	2500	117.0	1.000	.040	1900	88.9	1.000	.040	1300	60.8	1.000	.040
Depti	Depth of Cut												

		Heat Resistant Alloys								
	kpiece terial	Inconel718								
	С	Revolution	Feed Rate	Depth of Cut	Width of Cut ae					
(mm)	(inch)	(min-1)	(IPM)	ар						
	.3750	1300	10.1	.375	.019					
10	.3937	1300	10.1	.394	.020					
12	.4724	1100	9.2	.472	.024					
	.5000	990	8.3	.500	.025					
.6250		790	11.9	.625	.025					
16	.6299	790	11.9	.630	.025					
	.7500	660	12.7	.750	.030					
20	.7874	630	12.1	.787	.031					
25	.9843	500	9.6	.984	.039					
	1.0000	500	9.6	1.000	.040					
Depth of Cut		ap								

- Note 1) The irregular helix flute end mill has a larger effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece material installation is poor, vibration or abnormal sound can occur.
 - In this case, please reduce the revolution and the feed rate proportionately, or set a lower depth of cut.
- Note 2) If the depth of cut is smaller, the revolution and the feed rate can be increased.
- Note 3) If the machining radius at the corner is the same as the tool radius when using a head with more than 10 flutes, please set the depth of cut and feed rate to half of the above.
- Note 4) For stainless steels, titanium alloys and heat resistant alloys, the use of water-soluble coolant is effective.

