Identification(Shoulder Milling)

Reduce the cutting parameters by the coefficient values shown according to the length of overhang. For long edge and oversize types heads refer to their specific recommended conditions.

(inch)

Workpiece Material	Carbon Steels, Alloy Steels, Mild Steels, Copper, Copper Alloys			Pre-hardened S Alloy Steels, Allo	teels, Carbon Ste by Tool Steels	els,	Austenitic Stainless Steels, Ferritic and Martensitic Stainless Steels, Titanium Alloys			
L/D	Revolution n (min-1)	Feed per Tooth fz (IPT) Width of Cut ae		Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	
2	100%	100%	100%	100%	100%	100%	100%	100%	100%	
3	100%	100%	100%	100%	100%	100%	100%	100%	100%	
4	80%	90%	70%	80%	90%	70%	80%	90%	70%	
5	60%	80%	40%	60%	80%	40%	60%	80%	40%	
6	50%	70%	30%	50%	70%	30%	50%	70%	30%	
7	40%	70%	20%	40%	70%	20%	30%	60%	20%	
8	40%	60%	10%	40%	60%	10%	30%	50%	10%	
9	30%	60%	10%	30%	60%	10%	20%	50%	10%	

Workpiece Material	Precipitation Ha	rdening Stainless m Alloys	Steels,	Heat Resistant Alloys					
				Inconel718					
L/D	Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae			
2	100%	100%	100%	100%	100%	100%			
3	100%	100%	100%	100%	100%	100%			
4	80%	90%	70%	80%	90%	70%			
5	60%	80%	40%	60%	80%	40%			
6	50%	70%	30%	50%	70%	30%			
7	30%	60%	20%	30%	60%	20%			
8	30%	50%	10%	30%	50%	10%			
9	20%	50%	10%	20%	50%	10%			

Recommended Cutting Conditions

Shoulder Milling (inch)

Workpiece Material		Austenitic Stainless Steels, Ferritic and Martensitic Stainless Steels				Precipitation Hardening Stainless Steels, Titanium Alloys				Heat Resistant Alloys			
DC (mm)	No. of Flutes	Revolution n (min-1)	Feed Rate vf (IPM)	Depth of Cut ap	Width of Cut ae	Revolution n (min-1)	Feed Rate vf (IPM)	Depth of Cut	Width of Cut ae	Revolution n (min-1)	Feed Rate vf (IPM)	Depth of Cut	Width of Cut ae
8	8	12000	378.0	.012	.047	8000	252.0	.012	.047	2400	59.1	.012	.031
10	10	9500	374.0	.012	.059	6400	252.0	.012	.059	1900	59.1	.012	.039
15	12	6400	362.2	.012	.087	4200	236.2	.012	.087	1300	63.0	.012	.059
15	15	6400	378.0	.012	.087	4200	248.0	.012	.087	1300	63.0	.012	.059
19	12	5000	283.5	.012	.110	3400	192.9	.012	.110	1000	47.2	.012	.075
19	15	5000	295.3	.012	.110	3400	200.8	.012	.110	1000	47.2	.012	.075
Depth of Cut		ae											

Note 1) Vibration may occur if the rigidity of machine or workpiece material is low.

In this case, please reduce the revolution and the feed rate proportionately, or set a lower depth of cut.

Note 2) The use of water-soluble coolant is effective.