Identification(Shoulder Milling)

Reduce the cutting parameters by the coefficient values shown according to the length of overhang. For long edge and oversize types heads refer to their specific recommended conditions.

(inch)

Workpiece Material	Carbon Steels, Alloy Steels, Mild Steels, Copper, Copper Alloys			Pre-hardened S Alloy Steels, Allo	teels, Carbon Ste by Tool Steels	els,	Austenitic Stainless Steels, Ferritic and Martensitic Stainless Steels, Titanium Alloys			
L/D	Revolution n (min-1)	n fz Width of Cut			Feed per Tooth fz (IPT)	Width of Cut ae	Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	
2	100%	100%	100%	100%	100%	100%	100%	100%	100%	
3	100%	100%	100%	100%	100%	100%	100%	100%	100%	
4	80%	90%	70%	80%	90%	70%	80%	90%	70%	
5	60%	80%	40%	60%	80%	40%	60%	80%	40%	
6	50%	70%	30%	50%	70%	30%	50%	70%	30%	
7	40%	70%	20%	40%	70%	20%	30%	60%	20%	
8	40%	10% 60% 10%		40%	60%	10%	30%	50%	10%	
9	30%	30% 60% 10%		30%	60%	10%	20%	50%	10%	

Workpiece Material	Precipitation Ha	rdening Stainless m Alloys	Steels,	Heat Resistant Alloys				
				Inconel718				
L/D	Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae	Revolution n (min-1)	Feed per Tooth fz (IPT)	Width of Cut ae		
2	100%	100%	100%	100%	100%	100%		
3	100%	100% 100%		100%	100%	100%		
4	80%	90%	70%	80%	90%	70%		
5	60%	80%	40%	60%	80%	40%		
6	50%	70%	30%	50%	70%	30%		
7	30%	60%	20%	30%	60%	20%		
8	30% 50% 10%		10%	30%	50%	10%		
9	20%	50%	10%	20%	50%	10%		

Recommended Cutting Conditions

Shoulder Milling (inch)

				Pre-hardened Steels, Carbon Steels, Alloy Steels, Alloy Tool Steels				Hardened Steels, Precipitation Hardening Stainless Steels, Ferritic and Martensitic Stainless Steels					
(mm) (inch)		Revolution n (min-1)	Feed Rate vf (IPM)	Depth of Cut ap	Width of Cut ae	Revolution n (min-1)	Feed Rate vf (IPM)	Depth of Cut ap	Width of Cut ae	Revolution n (min-1)	Feed Rate vf (IPM)	Depth of Cut	Width of Cut ae
	.3750	5000	314.0	.019	.225	4500	282.6	.019	.225	4000	188.8	.019	.225
10	.3937	4800	301.4	.020	.236	4300	270.0	.020	.236	3800	179.4	.020	.236
12	.4724	4000	283.2	.024	.283	3600	254.9	.024	.283	3200	151.0	.024	.283
	.5000	3700	262.0	.025	.300	3400	240.7	.025	.300	3000	141.6	.025	.300
	.6250	3000	236.4	.031	.375	2700	212.8	.031	.375	2400	150.7	.031	.375
16	.6299	3000	236.4	.031	.378	2700	212.8	.031	.378	2400	150.7	.031	.378
	.7500	2500	197.0	.038	.450	2300	181.2	.038	.450	2000	125.6	.038	.450
20	.7874	2400	189.1	.039	.472	2200	173.4	.039	.472	1900	119.3	.039	.472
25	.9843	1900	149.7	.049	.591	1700	134.0	.049	.591	1500	94.2	.049	.591
	1.0000	1900	149.7	.050	.600	1700	134.0	.050	.600	1500	94.2	.050	.600
Deptl	Depth of Cut												

Workpiece Material			Stainless Ste	els, Titanium	n Alloys,	Heat Resistant Alloys					
						Inconel718					
I	DC	Revolution	Feed Rate		Width of Cut	Revolution	Feed Rate		Width of Cut		
(mm)	(inch)	(min-1)	(IPM)	ар	ae	(min-1)	(IPM)	ар	ae		
	.3750	1300	41.1	.019	.225	810	12.6	.019	.225		
10	.3937	1300	41.1	.020	.236	780	12.2	.020	.236		
12	.4724	1100	34.8	.024	.283	650	10.1	.024	.283		
	.5000	990	31.3	.025	.300	610	9.5	.025	.300		
	.6250	790	37.3	.031	.375	490	11.6	.031	.375		
16	.6299	790	37.3	.031	.378	490	11.6	.031	.378		
	.7500	660	31.2	.038	.450	410	9.7	.038	.450		
20	.7874	630	29.7	.039	.472	390	9.2	.039	.472		
25	.9843	500	23.6	.049	.591	310	7.3	.049	.591		
	1.0000	500	23.6	.050	.600	310	7.3	.050	.600		
Depth	n of Cut	ap									

Note 1) Vibration may occur if the rigidity of machine or workpiece material is low.

In this case, please reduce the revolution and the feed rate proportionately, or set a lower depth of cut.

Note 2) If the depth of cut is smaller, the revolution and the feed rate can be increased.

Note 3) Please reduce the feed rate by half when ramping.

Note 4) For stainless steels, titanium alloys and heat resistant alloys, the use of water-soluble coolant is effective.