## Identification(Shoulder Milling)

Reduce the cutting parameters by the coefficient values shown according to the length of overhang. For long edge and oversize types heads refer to their specific recommended conditions.

(inch)

| Workpiece<br>Material |                                       |      |                            | Pre-hardened S<br>Alloy Steels, Allo | teels, Carbon Ste<br>by Tool Steels | els,                       | Austenitic Stainless Steels,<br>Ferritic and Martensitic Stainless Steels,<br>Titanium Alloys |                 |      |  |
|-----------------------|---------------------------------------|------|----------------------------|--------------------------------------|-------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------|-----------------|------|--|
| L/D                   | Revolution n fz (IPT) Width of Cut ae |      | Revolution<br>n<br>(min-1) | Feed per Tooth fz (IPT)              | Width of Cut ae                     | Revolution<br>n<br>(min-1) | Feed per Tooth<br>fz<br>(IPT)                                                                 | Width of Cut ae |      |  |
| 2                     | 100%                                  | 100% | 100%                       | 100%                                 | 100%                                | 100%                       | 100%                                                                                          | 100%            | 100% |  |
| 3                     | 100%                                  | 100% | 100%                       | 100%                                 | 100%                                | 100%                       | 100%                                                                                          | 100%            | 100% |  |
| 4                     | 80%                                   | 90%  | 70%                        | 80%                                  | 90%                                 | 70%                        | 80%                                                                                           | 90%             | 70%  |  |
| 5                     | 60%                                   | 80%  | 40%                        | 60%                                  | 80%                                 | 40%                        | 60%                                                                                           | 80%             | 40%  |  |
| 6                     | 50%                                   | 70%  | 30%                        | 50%                                  | 70%                                 | 30%                        | 50%                                                                                           | 70%             | 30%  |  |
| 7                     | 40%                                   | 70%  | 20%                        | 40%                                  | 70%                                 | 20%                        | 30%                                                                                           | 60%             | 20%  |  |
| 8                     | 40% 60% 10%                           |      |                            | 40%                                  | 60%                                 | 10%                        | 30%                                                                                           | 50%             | 10%  |  |
| 9                     | 30%                                   | 60%  | 10%                        | 30%                                  | 60%                                 | 10%                        | 20%                                                                                           | 50%             | 10%  |  |

| Workpiece | Precipitation Ha           | rdening Stainless<br>m Alloys | Steels,         | Heat Resistant Alloys      |                               |                 |  |  |
|-----------|----------------------------|-------------------------------|-----------------|----------------------------|-------------------------------|-----------------|--|--|
| Material  |                            |                               |                 | Inconel718                 |                               |                 |  |  |
| L/D       | Revolution<br>n<br>(min-1) | Feed per Tooth<br>fz<br>(IPT) | Width of Cut ae | Revolution<br>n<br>(min-1) | Feed per Tooth<br>fz<br>(IPT) | Width of Cut ae |  |  |
| 2         | 100%                       | 100%                          | 100%            | 100%                       | 100%                          | 100%            |  |  |
| 3         | 100%                       | 100%                          | 100%            | 100%                       | 100%                          | 100%            |  |  |
| 4         | 80%                        | 90%                           | 70%             | 80%                        | 90%                           | 70%             |  |  |
| 5         | 60%                        | 80%                           | 40%             | 60%                        | 80%                           | 40%             |  |  |
| 6         | 50%                        | 70%                           | 30%             | 50%                        | 70%                           | 30%             |  |  |
| 7         | 30%                        | 60%                           | 20%             | 30%                        | 60%                           | 20%             |  |  |
| 8         | 30%                        | 50%                           | 10%             | 30%                        | 50%                           | 10%             |  |  |
| 9         | 20%                        | 50%                           | 10%             | 20%                        | 50%                           | 10%             |  |  |



## **Recommended Cutting Conditions**

Shoulder Milling (inch)

|         |              |                 |               | Pre-hardened Steels, Carbon Steels,<br>Alloy Steels, Alloy Tool Steels |                    |                 |               | Austenitic Stainless Steels,<br>Ferritic and Martensitic Stainless Steels,<br>Titanium Alloys |                    |                 |                          |              |              |
|---------|--------------|-----------------|---------------|------------------------------------------------------------------------|--------------------|-----------------|---------------|-----------------------------------------------------------------------------------------------|--------------------|-----------------|--------------------------|--------------|--------------|
| (mm)    | (inch)       | Revolution<br>n | vf            | Depth of Cut                                                           | Width of Cut<br>ae | Revolution<br>n | vf            | Depth of Cut                                                                                  | Width of Cut<br>ae | Revolution<br>n | Feed Rate<br>vf<br>(IPM) | Depth of Cut | Width of Cut |
| (11111) | .3750        | (min-1)<br>5000 | (IPM)<br>52.5 | .300                                                                   | .075               | (min-1)<br>4000 | (IPM)<br>28.8 | .300                                                                                          | .075               | (min-1)<br>3400 | 30.6                     | .300         | .075         |
| 10      | .3937        | 4800            | 50.4          | .315                                                                   | .079               | 3800            | 27.4          | .315                                                                                          | .079               | 3200            | 28.8                     | .315         | .079         |
| 12      | .4724        | 4000            | 42.0          | .378                                                                   | .094               | 3200            | 25.0          | .378                                                                                          | .094               | 2700            | 25.1                     | .378         | .094         |
|         | .5000        | 3700            | 38.9          | .400                                                                   | .100               | 3000            | 23.4          | .400                                                                                          | .100               | 2500            | 23.3                     | .400         | .100         |
|         | .6250        | 3000            | 35.1          | .500                                                                   | .125               | 2400            | 21.6          | .500                                                                                          | .125               | 2000            | 21.0                     | .500         | .125         |
| 16      | .6299        | 3000            | 35.1          | .504                                                                   | .126               | 2400            | 21.6          | .504                                                                                          | .126               | 2000            | 21.0                     | .504         | .126         |
|         | .7500        | 2500            | 29.3          | .600                                                                   | .150               | 2000            | 18.0          | .600                                                                                          | .150               | 1700            | 17.9                     | .600         | .150         |
| 20      | .7874        | 2400            | 28.1          | .630                                                                   | .157               | 1900            | 17.1          | .630                                                                                          | .157               | 1600            | 16.8                     | .630         | .157         |
| 25      | .9843        | 1900            | 26.8          | .787                                                                   | .197               | 1500            | 13.5          | .787                                                                                          | .197               | 1300            | 13.7                     | .787         | .197         |
|         | 1.0000       | 1900            | 26.8          | .800                                                                   | .200               | 1500            | 13.5          | .800                                                                                          | .200               | 1300            | 13.7                     | .800         | .200         |
| Depth   | Depth of Cut |                 |               |                                                                        |                    |                 |               |                                                                                               |                    |                 |                          |              |              |

|       | kpiece<br>terial |                            | n Hardening<br>omium Alloys | Stainless St | eels,           | Heat Resistant Alloys Inconel718 |                          |              |                 |  |
|-------|------------------|----------------------------|-----------------------------|--------------|-----------------|----------------------------------|--------------------------|--------------|-----------------|--|
| (mm)  | (inch)           | Revolution<br>n<br>(min-1) | Feed Rate<br>vf<br>(IPM)    | Depth of Cut | Width of Cut ae | Revolution<br>n<br>(min-1)       | Feed Rate<br>vf<br>(IPM) | Depth of Cut | Width of Cut ae |  |
|       | .3750            | _ `                        | 18.0                        | .300         | .075            | 1300                             | 6.2                      | .300         | .038            |  |
| 10    | .3937            | 2400                       | 17.3                        | .315         | .079            | 1300                             | 6.2                      | .315         | .039            |  |
| 12    | .4724            | 2000                       | 15.6                        | .378         | .094            | 1100                             | 5.9                      | .378         | .047            |  |
|       | .5000            | 1900 14.8 .400 .1          |                             | .100         | 990             | 5.3                              | .400                     | .050         |                 |  |
|       | .6250            | 1500                       | 13.5                        | .500         | .125            | 790                              | 4.7                      | .500         | .063            |  |
| 16    | .6299            | 1500                       | 13.5                        | .504         | .126            | 790                              | 4.7                      | .504         | .063            |  |
|       | .7500            | 1200                       | 10.8                        | .600         | .150            | 660                              | 4.0                      | .600         | .075            |  |
| 20    | .7874            | 1200                       | 10.8                        | .630         | .157            | 630                              | 3.8                      | .630         | .079            |  |
| 25    | .9843            | 950                        | 8.6                         | .787         | .197            | 500                              | 3.0                      | .787         | .098            |  |
|       | 1.0000           | 940                        | 8.5                         | .800         | .200            | 500                              | 3.0                      | .800         | .100            |  |
| Depth | n of Cut         |                            |                             |              |                 | ae<br>ap                         |                          |              |                 |  |

Note 1) The irregular helix flute end mill has a larger effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece material installation is poor, vibration or abnormal sound can occur. In this case, please reduce the revolution and the feed rate proportionately, or set a lower depth of cut.

Note 2) If the depth of cut is smaller, the revolution and the feed rate can be increased.

Note 3) For stainless steels, titanium alloys and heat resistant alloys, the use of water-soluble coolant is effective.



## **Recommended Cutting Conditions**

Slot Milling (inch)

| Workpiece<br>Material |        | Carbon Steels,<br>Copper, Copper | Alloy Steels, Milor Alloys | d Steels,          | Pre-hardened S<br>Alloy Steels, All | Steels, Carbon Stoy Tool Steels | teels,             | Austenitic Stainless Steels,<br>Ferritic and Martensitic Stainless Steels,<br>Titanium Alloys |                          |              |
|-----------------------|--------|----------------------------------|----------------------------|--------------------|-------------------------------------|---------------------------------|--------------------|-----------------------------------------------------------------------------------------------|--------------------------|--------------|
| (mm)                  | (inch) | Revolution<br>n<br>(min-1)       | Feed Rate<br>vf<br>(IPM)   | Depth of Cut<br>ap | Revolution<br>n<br>(min-1)          | Feed Rate<br>vf<br>(IPM)        | Depth of Cut<br>ap | Revolution<br>n<br>(min-1)                                                                    | Feed Rate<br>vf<br>(IPM) | Depth of Cut |
|                       | .3750  | 3400                             | 16.1                       | .188               | 2600                                | 9.4                             | .188               | 2500                                                                                          | 9.0                      | .188         |
| 10                    | .3937  | 3200                             | 15.4                       | .197               | 2500                                | 9.0                             | .197               | 2400                                                                                          | 8.6                      | .197         |
| 12                    | .4724  | 2700                             | 16.2                       | .236               | 2100                                | 10.1                            | .236               | 2000                                                                                          | 9.6                      | .236         |
|                       | .5000  | 2500                             | 15.0                       | .250               | 2000                                | 9.6                             | .250               | 1900                                                                                          | 9.1                      | .250         |
|                       | .6250  | 2000                             | 16.8                       | .313               | 1600                                | 9.6                             | .313               | 1500                                                                                          | 10.8                     | .313         |
| 16                    | .6299  | 2000                             | 16.8                       | .315               | 1600                                | 9.6                             | .315               | 1500                                                                                          | 10.8                     | .315         |
|                       | .7500  | 1700                             | 14.3                       | .375               | 1300                                | 7.8                             | .375               | 1200                                                                                          | 8.6                      | .375         |
| 20                    | .7874  | 1600                             | 13.4                       | .394               | 1300                                | 7.8                             | .394               | 1200                                                                                          | 8.6                      | .394         |
| 25                    | .9843  | 1300                             | 12.1                       | .472               | 1000                                | 6.0                             | .472               | 950                                                                                           | 6.8                      | .472         |
|                       | 1.0000 | 1300                             | 12.1                       | .480               | 990                                 | 5.9                             | .480               | 940                                                                                           | 6.8                      | .480         |
| Depth of Cut          |        |                                  |                            |                    |                                     |                                 |                    | DC=Dia.                                                                                       |                          |              |

| Wor   | kpiece   | Precipitation Ha | ardening Stainles<br>Im Alloys | s Steels,    | Heat Resistant Alloys |           |              |  |
|-------|----------|------------------|--------------------------------|--------------|-----------------------|-----------|--------------|--|
|       | terial   |                  |                                |              | Inconel718            |           |              |  |
| ı     | С        | Revolution       | Feed Rate                      | Depth of Cut | Revolution            | Feed Rate | Depth of Cut |  |
| (mm)  | (inch)   | n<br>(min-1)     | (IPM)                          | ар           | n<br>(min-1)          | (IPM)     | ар           |  |
|       | .3750    | 2000             | 6.0                            | .188         | 1000                  | 2.4       | .075         |  |
| 10    | .3937    | 1900             | 5.7                            | .197         | 970                   | 2.3       | .079         |  |
| 12    | .4724    | 1600             | 6.7                            | .236         | 810                   | 2.9       | .094         |  |
|       | .5000    | 1500             | 6.3                            | .250         | 760                   | 2.7       | .100         |  |
|       | .6250    | 1200             | 7.2                            | .313         | 610                   | 3.7       | .125         |  |
| 16    | .6299    | 1200             | 7.2                            | .315         | 610                   | 3.7       | .126         |  |
|       | .7500    | 990              | 5.9                            | .375         | 510                   | 3.1       | .150         |  |
| 20    | .7874    | 950              | 5.7                            | .394         | 490                   | 2.9       | .157         |  |
| 25    | .9843    | 760              | 4.6                            | .472         | 390                   | 2.3       | .197         |  |
|       | 1.0000   | 740              | 4.4                            | .480         | 380                   | 2.3       | .200         |  |
| Depth | n of Cut |                  |                                | DC           | ap                    |           | DC=Dia.      |  |

Note 1) The irregular helix flute end mill has a larger effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece material installation is poor, vibration or abnormal sound can occur. In this case, please reduce the revolution and the feed rate proportionately, or set a lower depth of cut.

Note 2) If the depth of cut is smaller, the revolution and the feed rate can be increased.

Note 3) For stainless steels, titanium alloys and heat resistant alloys, the use of water-soluble coolant is effective.

Plunging (inch)

|      |          |              |           | Pre-hardened Steels, Carbon Steels,<br>Alloy Steels, Alloy Tool Steels |      |              |           | Austenitic Stainless Steels,<br>Ferritic and Martensitic Stainless Steels,<br>Titanium Alloys |      |              |           |              |      |
|------|----------|--------------|-----------|------------------------------------------------------------------------|------|--------------|-----------|-----------------------------------------------------------------------------------------------|------|--------------|-----------|--------------|------|
|      | DC       | Revolution n | Feed Rate | Depth of Cut                                                           |      | Revolution n | Feed Rate | Depth of Cut                                                                                  |      | Revolution n | Feed Rate | Depth of Cut |      |
| (mm) | (inch)   | (min-1)      | (IPM)     | ар                                                                     | ap2  | (min-1)      | (IPM)     | ар                                                                                            | ap2  | (min-1)      | (IPM)     | ар           | ap2  |
|      | .3750    | 3400         | 18.7      | .188                                                                   | .100 | 2300         | 8.1       | .188                                                                                          | .080 | 2000         | 2.4       | .188         | .023 |
| 10   | .3937    | 3200         | 17.6      | .197                                                                   | .100 | 2200         | 7.7       | .197                                                                                          | .080 | 1900         | 2.3       | .197         | .023 |
| 12   | .4724    | 2700         | 14.9      | .236                                                                   | .100 | 1900         | 6.7       | .236                                                                                          | .080 | 1600         | 1.9       | .236         | .023 |
|      | .5000    | 2500         | 13.8      | .250                                                                   | .100 | 1800         | 6.3       | .250                                                                                          | .080 | 1500         | 1.8       | .250         | .023 |
|      | .6250    | 2000         | 11.0      | .313                                                                   | .100 | 1400         | 4.9       | .313                                                                                          | .080 | 1200         | 1.4       | .313         | .023 |
| 16   | .6299    | 2000         | 11.0      | .315                                                                   | .100 | 1400         | 4.9       | .315                                                                                          | .080 | 1200         | 1.4       | .315         | .023 |
|      | .7500    | 1700         | 9.4       | .375                                                                   | .100 | 1200         | 4.2       | .375                                                                                          | .080 | 990          | 1.2       | .375         | .023 |
| 20   | .7874    | 1600         | 8.8       | .394                                                                   | .100 | 1100         | 3.9       | .394                                                                                          | .080 | 950          | 1.1       | .394         | .023 |
| 25   | .9843    | 1300         | 7.2       | .492                                                                   | .100 | 880          | 3.1       | .492                                                                                          | .080 | 760          | .9        | .492         | .023 |
|      | 1.0000   | 1300         | 7.2       | .500                                                                   | .100 | 880          | 3.1       | .500                                                                                          | .080 | 740          | .9        | .500         | .023 |
| Dept | h of Cut | Cut          |           |                                                                        |      |              |           |                                                                                               |      |              |           |              |      |

| Workpiece<br>Material |        | Precipitation Hardening Stainless Steels,<br>Cobalt Chromium Alloys |                          |              |               |  |  |  |  |  |
|-----------------------|--------|---------------------------------------------------------------------|--------------------------|--------------|---------------|--|--|--|--|--|
| (mm)                  | (inch) | Revolution<br>n<br>(min-1)                                          | Feed Rate<br>vf<br>(IPM) | Depth of Cut | Step Feed ap2 |  |  |  |  |  |
| ()                    | .3750  | 1300                                                                | 1.6                      | .188         | .023          |  |  |  |  |  |
| 10                    | .3937  | 1300                                                                | 1.6                      | .197         | .023          |  |  |  |  |  |
| 12                    | .4724  | 1100                                                                | 1.3                      | .236         | .023          |  |  |  |  |  |
|                       | .5000  | 990                                                                 | 1.2                      | .250         | .023          |  |  |  |  |  |
|                       | .6250  | 790                                                                 | .9                       | .313         | .023          |  |  |  |  |  |
| 16                    | .6299  | 790                                                                 | .9                       | .315         | .023          |  |  |  |  |  |
|                       | .7500  | 660                                                                 | .8                       | .375         | .023          |  |  |  |  |  |
| 20                    | .7874  | 630                                                                 | .8                       | .394         | .023          |  |  |  |  |  |
| 25                    | .9843  | 500                                                                 | .6                       | .492         | .023          |  |  |  |  |  |
|                       | 1.0000 | 500                                                                 | .6                       | .500         | .023          |  |  |  |  |  |
| Depth of Cut          |        | 300 .6 .300 .023                                                    |                          |              |               |  |  |  |  |  |

Note 1) The irregular helix flute end mill has a larger effect on controlling vibration when compared to standard end mills. However, if the rigidity of the machine or the workpiece material installation is poor, vibration or abnormal sound can occur. Note 2) If the depth of cut is smaller, the revolution and the feed rate can be increased.

Note 3) For stainless steels, titanium alloys and heat resistant alloys, the use of water-soluble coolant is effective.